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Magnetizable fluids are currently widely used in heat and power engineering. Such 
fluids can be successfully used as coolants in case where ordinary fluids require addi- 
tional devices and energy consumption, for example under conditions of weightlessness. The 
possibility of using magnetizable fluids in electrical generators [i] opens up new prospects 
for the direct conversion of thermal energy into electrical energy. The effectiveness of 
heat exchange devices and power installations is determined to a significant degree by the 
working temperature of the magnetizable fluid. The largest energy effects in many cases are 
obtained when the temperature is close to the Curie point [I]. However close to the Curie 
temperature the fluid partially loses its magnetic properties and this will naturally affect 
its flow properties. In addition, the magnetocaloric effect will also affect the flow and 
this reaches a maximum at the Curie point [2]. Although this is a small effect, the result- 
ing redistribution of temperature over the width of the channel in the steady-state is signif- 
icant. We consider the nonisothermal stationary flow of an incompressible, nonconducting, 
magnetizable fluid in a plane channel when the temperature is close to the Curie point. We 
assume that the fluid is magnetized to saturation by a strong external magnetic field H 
directed perpendicular to the channel. Then the magnetic force in the equation of motion 
can be written in the form ~o~H [3], where M =M(T) is the bulk magnetization, and ~o is the 
magnetic constant. We also assume that constant heat sources Q are uniformly distributed 
over the entire volume of the fluid. 

Consider a plane channel of width 2D in which a magnetizable fluid moves under the 
action of an external magnetic field gradient G directed along the channel. The temperature 
To of the channel walls is held constant at a value close to the Curie point. Then the equa- 
tions of motion and heat conduction for the magnetizable fluid can be written in the form 
[3, 4] 

~d2U/dY 2 + ~oMG = O; (1 )  

~xl2T/dY 2 -5 ~oToAGU + Q = o, (2) 

where U is the x-component of the velocity vector, T is the temperature, G =~H/3X ~const; 
h ffi --(~M/3T)o,H is the pyromagnetic coefficient, p is the density, land n are the thermal 
conductivity and dynamical viscosity, respectively. The Y-axis is directed perpendicular 
to the walls of the channel, while the X axis goes down its axis. Because the change in 
temperature across a section of the channel will be small in comparison to the temperature 
To itself, in the second term of (2) (the magnetocalorie effect) we can put T =To. The bound- 
ary conditions are obvious physically: 

U = O, T = To ~r Cf=zhD). (3) 

The solution of the boundary value problem definedby (i), (2), and (3) depends on 
the form of the function M =M(T), It is usual in the solution of this kind of problem to 
approximate M(T) by segments such that either M is constant or a linear function of tempera- 
ture [3-5] over the temperature range under consideration. At temperatures close to the 
Curie point this method breaks down because here M(T) is extremely nonlinear. Also for 
large external magnetic fields the magnetization asymptotically goes to zero with increasing 
temperature [2]. Hence it is necessary to use a realistic M(T) dependence and this leads to 
difficulties in finding the solution due to the mathematical complexity of the problem and 
the necessity to take into account the properties of actual magnetizable fluids. However 
it is possible to significantly simplify the problem in some cases by approximating the real 

- -  M(T) curve by a simpler one. In our treatment, the M -M(T~ curve is approximated by two 
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straight lines. In Fig. i the actual M(T) curve is shown as a dashed line and the approxi- 
mate one as the dolid lines. Below we will discuss when this approximation is valid. 

Thus we assume that M =M(T) can be described by the function M •A(T C -- T), where T C 
is the Curie temperature. We construct separate solutions for temperatures below the Curie 
point where M >0 and for temperatures equal or above the Curie point where M •0. We choose 
the following scales of measurement: the length D, temperature T C -- To, and velocity (T C -- 
T o ) ~  Then the original equations (1) and (2) can be written in dimensionless form for 
each of the temperature regions: 

dZul/dy 2 + 2k~(i - -  01) - -  O, d20~/dy 2 + 2~u~ + q = 0 ~r~ ( T < To); (4 )  

d~u2/dy2 = O, d~O2/dy2~q = 0 ~r ( T ~ T a ) ,  ( 5 )  

where 0 ~ , 2  =(T -- To)/(T C -- To); q =D2Q/(~(Tc - To)); 2k 2 =~oAGD2 T~o/~, k >0. Boundary 
condition (3) takes the form 

u l - - 0 1 = 0  ~ r  ( y = + | ) .  ( 6 )  

S o l v i n g  t h e  s y s t e m  o f  e q u a t i o n s  (4 )  w i t h  b o u n d a r y  c o n d i t i o n s  (6 )  we f i n d  
_ ~ 

(2k2shksink+qchkcosk) ch~cosky - - (~2chkcosk - -qshks ink ) shky~nky  q 
U l =  2k2(sh2k +c~ - -  ~ ' ( 7 )  

Ox = ~ - -  (2/r sh k sin k @ q ch k cos k) sh ky sin ky ~ (2k 2 ch k c ~  k - -  q sh k sin k) ch ky c~  ky 
2~ 2 (sh 2 k + cos2~) 

The solution (7) is valid for q <2 and k <ko where ko(0 <ko~<~/2) is found from the 
solution of the transcendental equation 2k~cosh ko cos ko = qsinh ko sin ko. When k ffi ko the temper- 
ature in the center of the channel reaches the Curie point. Because of the magnetocaloric 
effect, further increase in k leads to an extension of the Curie point to fluid layers lying 
further from the center of the channel. Thus a certain region of the channel --yo < y < yo is 
heated above the Curie temperature. 

For q <2, k>~ko and for q>~2, because of the symmetry of the problem relative to the 
center of the channel, it is convenient to look for the solution of (4) and (5) in the region 
0~y<~l. The relevant boundary conditions are du2/dy =d0~/dy =0 at y =0 and ul ~0~ =0 at 
y -I. In addition at y =yo we must have 

ul -- u2, 01 = 0~ -- i ,  dul/dy -- du2/dy, dO1/dy=dO2/dy. 

We then obtain yo =i -- a/k, 

U 2 

i - -  ch a cos a + (k - -  a) (ch'a sin a - -  sh a cos a) 
sh a sin a --~ (k - -  a) (sh a cha--~ sin a cos a) ' 

= i - - q t 2  02 t -~- ~Yo - -  f ) ,  

where a(0 <a <~/2, a <k) which is found from solving the transcendental equation 2k2cosh a cos 
a •q[sinh a sin a+ (k -- a) (sinh a+ sin a cos a)], 

u 1 = a x s h k y s i n k y + a 2 c h k y s i n k y + ~ s h  k y c o s k y + a 4 c h k y c o s k y - - ~ 2 k 2 ,  

01 = i ~ a x c h k y c o s k y - ~ a 2 s h k y c o s k y - - a 3  ch ky sin k y - - a 4 s h k y s i n k y  , 

where 

a l  = - - ~  sh  kyo s in  kyo ~- J3(ch kyo s in  kYo -~ s h  kyo cos kyo); 

a~ = cz ch  kyo s i n  kyo - -  J~(ch kyo cos kyo ~ sh  kyo s in  kyo); 

as = - - ~  sh  kYo cos kyo ~ [~(ch kYo cos kyo - -  sh  kYo s in  kyo); 

a 4 = ~ ch  ky o cos kyo -~ [~(ch kyo s in  ky o --  sh ky 0 cos ky0); 

= u, + q/2k2; p = yoq/2k. 

I n  t h e  s p e c i a l  c a s e  q = 0  we h a v e  yo  = 1  - -  ~ / 2 k ,  

u2 = i / sh (~ /2 ) ,  02 = l ,  u 1 = ch(k - -  Icy - -  ~/2)  s in  (k - -  ky)/sh(~/2), 

01 = i - -  sh(~ /2  - -  k ~- ky) cos (k - -  "ky)/sh(~/2). 

I t  i s  c l e a r  f r o m  t h e s e  e x p r e s s i o n s  t h a t  i n  t h e  c e n t e r  o f  t h e  c h a n n e l  t h e r e  i s  a r e g i o n  w h o s e  
size depends on k and q where the fluid moves with a velocity constant over the cross section 
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of the channel. In Fig. 2 x.~ show the dimensionless velocity profile u(y) for different 
values of k and q (curves 1-3: k =w, q =0, i, 3; curves 4-6: k =w/2, q =0, I, 3). 

It remains to be shown under what conditions our results will not significantly depend 
on the form of the approximation function used. In order to answer this question we consider 
the original boundary value problem in Sobolev space W2(I). We write (4), (5) and boundary 
conditions (6) in the form 

~u/dy2 = --F:(O); (8) 

d20/dy ~ =--F2(u, 0); (9)  

u = O = O  ~r  ( y = _ _ i ) ,  (10)  

where 

I2k ~" (t -- 0), 
F~ (0) = (0, 

|2k u + q, 0 < i ,  O < i ,  2 . 
o~>l, ~.,(u, o) =/q. o~>t. 

1 1 

' [  du ' r  k ~ )  y = ~ uF1 (0) dg, 
- -1  --1 

From t h e  F r i d r i c k s  i n e q u a l i t y  [6]  we h a v e  

Multiply both sides of (8) by u and both sides of (9) by 0, and integrating with respect to 
y w i t h  t h e  u s e  o f  b o u n d a r y  c o n d i t i o n  (10)  we o b t a i n  

1 1 

y {  ~o ~ .  t : )  = .[ or, (u, o)d . 
--1 --1 

where ci>~0 is a constant. 

1 1 

--1 --1 

It then follows that 

I 

II u U[ ~< (i + cl) ~ u& (o) @ 
- - I  

and similarly 

1 

I o II~ <~ (I + g) ~f o& (u, o) dy, 
- -1  

where ~ "lli denotes the norm in the space W= (I). Thus we obtain 

u tl~ + ~ 0 ~I <~ (1 + cz) dy q-o OF, (u, O) dy . 

and it then follows that 

F i n a l l y  we o b t a i n  t h e  r e q u i r e d  i n e q u a l i t y  

1 

--1 

[F, ~ (0) + F~ (u, 0)1 @. 

519 



u ~ + ~ 0 If: < c ( [I F, ll~ + I I,', li~), (11) 
where I['[I o is the norm in the space L:. With the help of (ll) it can be shown that the 
solution of problem (8)-(10) is stable with respect to small perturbations of the right-hand 
sides--FI and--F=. 

We consider the perturbed problem 

~u,ldy~ = --F,e(0,), d~O~/dy)= --l,',,(u,, 0,), 

where Fie ->Fi when e § 

u,---- 0,----0 for Y = 4-1, 

and c o m p a r e  w i t h  t i l e  o r i g i n a l  p r o b l e m  ( 8 ) - ( 1 0 ) .  L e t  ~ =u  e - -  u a n d  T =0 e - -  0 and c o n s i d e r  
t h e  p r o b l e m  f o r  t h e  d i f f e r e n c e s  

d 2 c o / d y  2 = - -  [F,,(O,) - -  F,(O)], c B x / d y '  = - -  [ F o . , ( u , ,  0,) - -F~(u ,O)] ,  

r = T = 0  for y== =hi .  ( 12 )  

A p p l y i n g  i n e q u a l i t y  (11 )  t o  (12 )  we o b t a i n  

8~U;-I, flTll~--.<e (F,,--mqpdy+ .[ (F,,-- F,)' dy , 
1 --1 

f r o m  w h i c h  i t  f o l l o w s  t h a t  when t h e  p a r a m e t e r  k i s  b o u n d e d ,  t h e  o r i g i n a l  p r o b l e m  i s  s t a b l e .  

l~ ,us  we h a v e  shown t h a t  f o r  f l o w s  a t  t e m p e r a t u r e s  n e a r  t h e  C u r i e  p o i n t ,  t h e  c h a r a c t e r i s -  
t i c  f e a t u r e  o f  t h e  s o l u t i o n  i s  t h e  f o r m a t i o n  o f  a r e g i o n  o f  f l u i d  ( t h e  f l o w  c o r e )  m o v i n g  w i t h  
a velocity constant over the cross section of the channel. Naturally in the exact solution 
the fluid velocity will not be strictly constant over the entire cross section of the core. 

We computed the velocity profile and temperature by numerical methods on a compute r for 
other more realistic approximation functions to the curve H =M(T). The calculations showed 
that for bounded values of the parameter k, differences in the velocity profile and tempera- 
ture were insignificant, and this supports the validity of the treatment given above. 

~le authors thank K. B. Pavlov for helpful discussions of the work. 
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